Skip to main content
Back to top
Ctrl
+
K
Getting started
Tutorials
Data
Models
Metrics
FAQ
Contribute
API
Release Notes
GitHub
GitHub
Ctrl
+
K
Getting started
Tutorials
Data
Models
Metrics
FAQ
Contribute
API
Release Notes
GitHub
GitHub
Ctrl
+
K
Section Navigation
data
encoders
_clipped_log
_clipped_logit
_identity
_minus_one
_plus_one
_square
softplus_inv
EncoderNormalizer
Expm1Transform
GroupNormalizer
MinusOneTransform
MultiNormalizer
NaNLabelEncoder
ReLuTransform
SoftplusTransform
TorchNormalizer
TransformMixIn
examples
_get_data_by_filename
generate_ar_data
get_stallion_data
samplers
GroupedSampler
TimeSynchronizedBatchSampler
timeseries
_find_end_indices
check_for_nonfinite
TimeSeriesDataSet
models
base_model
_concatenate_output
_torch_cat_na
AutoRegressiveBaseModel
AutoRegressiveBaseModelWithCovariates
BaseModel
BaseModelWithCovariates
PredictCallback
PredictTuple
Prediction
baseline
Baseline
deepar
DeepAR
mlp
DecoderMLP
submodules
FullyConnectedModule
nbeats
NBeats
sub_modules
linear
linspace
NBEATSBlock
NBEATSGenericBlock
NBEATSSeasonalBlock
NBEATSTrendBlock
nhits
NHiTS
sub_modules
init_weights
IdentityBasis
NHiTS
NHiTSBlock
StaticFeaturesEncoder
nn
embeddings
MultiEmbedding
TimeDistributedEmbeddingBag
rnn
get_rnn
GRU
LSTM
RNN
rnn
RecurrentNetwork
temporal_fusion_transformer
TemporalFusionTransformer
sub_modules
AddNorm
GateAddNorm
GatedLinearUnit
GatedResidualNetwork
InterpretableMultiHeadAttention
PositionalEncoder
ResampleNorm
ScaledDotProductAttention
TimeDistributed
TimeDistributedInterpolation
VariableSelectionNetwork
tuning
optimize_hyperparameters
metrics
base_metrics
convert_torchmetric_to_pytorch_forecasting_metric
AggregationMetric
CompositeMetric
DistributionLoss
Metric
MultiHorizonMetric
MultiLoss
MultivariateDistributionLoss
TorchMetricWrapper
distributions
BetaDistributionLoss
ImplicitQuantileNetwork
ImplicitQuantileNetworkDistributionLoss
LogNormalDistributionLoss
MQF2DistributionLoss
MultivariateNormalDistributionLoss
NegativeBinomialDistributionLoss
NormalDistributionLoss
point
CrossEntropy
MAE
MAPE
MASE
PoissonLoss
RMSE
SMAPE
TweedieLoss
quantile
QuantileLoss
utils
_dependencies
_check_matplotlib
_get_installed_packages
_get_installed_packages_private
_maint
_show_versions
_get_deps_info
_get_sys_info
show_versions
_utils
apply_to_list
autocorrelation
concat_sequences
create_mask
detach
get_embedding_size
groupby_apply
integer_histogram
masked_op
move_to_device
next_fast_len
padded_stack
profile
repr_class
to_list
unpack_sequence
unsqueeze_like
InitialParameterRepresenterMixIn
OutputMixIn
TupleOutputMixIn
API
base_model
PredictTuple
PredictTuple
#
pytorch_forecasting.models.base_model.
PredictTuple
#
alias of
prediction
On this page
PredictTuple
Show Source