DeepAR#
- class pytorch_forecasting.models.deepar.DeepAR(cell_type: str = 'LSTM', hidden_size: int = 10, rnn_layers: int = 2, dropout: float = 0.1, static_categoricals: List[str] | None = None, static_reals: List[str] | None = None, time_varying_categoricals_encoder: List[str] | None = None, time_varying_categoricals_decoder: List[str] | None = None, categorical_groups: Dict[str, List[str]] | None = None, time_varying_reals_encoder: List[str] | None = None, time_varying_reals_decoder: List[str] | None = None, embedding_sizes: Dict[str, Tuple[int, int]] | None = None, embedding_paddings: List[str] | None = None, embedding_labels: Dict[str, ndarray] | None = None, x_reals: List[str] | None = None, x_categoricals: List[str] | None = None, n_validation_samples: int = None, n_plotting_samples: int = None, target: str | List[str] = None, target_lags: Dict[str, List[int]] | None = None, loss: DistributionLoss = None, logging_metrics: ModuleList = None, **kwargs)[source]#
Bases:
AutoRegressiveBaseModelWithCovariates
DeepAR Network.
The code is based on the article DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
By using a Multivariate Loss such as the
MultivariateNormalDistributionLoss
, the network is converted into a DeepVAR network.- Parameters:
cell_type (str, optional) – Recurrent cell type [“LSTM”, “GRU”]. Defaults to “LSTM”.
hidden_size (int, optional) – hidden recurrent size - the most important hyperparameter along with
rnn_layers
. Defaults to 10.rnn_layers (int, optional) – Number of RNN layers - important hyperparameter. Defaults to 2.
dropout (float, optional) – Dropout in RNN layers. Defaults to 0.1.
static_categoricals – integer of positions of static categorical variables
static_reals – integer of positions of static continuous variables
time_varying_categoricals_encoder – integer of positions of categorical variables for encoder
time_varying_categoricals_decoder – integer of positions of categorical variables for decoder
time_varying_reals_encoder – integer of positions of continuous variables for encoder
time_varying_reals_decoder – integer of positions of continuous variables for decoder
categorical_groups – dictionary where values are list of categorical variables that are forming together a new categorical variable which is the key in the dictionary
x_reals – order of continuous variables in tensor passed to forward function
x_categoricals – order of categorical variables in tensor passed to forward function
embedding_sizes – dictionary mapping (string) indices to tuple of number of categorical classes and embedding size
embedding_paddings – list of indices for embeddings which transform the zero’s embedding to a zero vector
embedding_labels – dictionary mapping (string) indices to list of categorical labels
n_validation_samples (int, optional) – Number of samples to use for calculating validation metrics. Defaults to None, i.e. no sampling at validation stage and using “mean” of distribution for logging metrics calculation.
n_plotting_samples (int, optional) – Number of samples to generate for plotting predictions during training. Defaults to
n_validation_samples
if not None or 100 otherwise.target (str, optional) – Target variable or list of target variables. Defaults to None.
target_lags (Dict[str, Dict[str, int]]) – dictionary of target names mapped to list of time steps by which the variable should be lagged. Lags can be useful to indicate seasonality to the models. If you know the seasonalit(ies) of your data, add at least the target variables with the corresponding lags to improve performance. Defaults to no lags, i.e. an empty dictionary.
loss (DistributionLoss, optional) – Distribution loss function. Keep in mind that each distribution loss function might have specific requirements for target normalization. Defaults to
NormalDistributionLoss
.logging_metrics (nn.ModuleList, optional) – Metrics to log during training. Defaults to nn.ModuleList([SMAPE(), MAE(), RMSE(), MAPE(), MASE()]).
Methods
construct_input_vector
(x_cat, x_cont[, ...])Create input vector into RNN network
create_log
(x, y, out, batch_idx)Create the log used in the training and validation step.
decode
(input_vector, target_scale, ...[, ...])Decode hidden state of RNN into prediction.
decode_all
(x, hidden_state[, lengths])encode
(x)Encode sequence into hidden state
forward
(x[, n_samples])Forward network
from_dataset
(dataset[, ...])Create model from dataset.
predict
(data[, mode, return_index, ...])predict dataloader
- construct_input_vector(x_cat: Tensor, x_cont: Tensor, one_off_target: Tensor = None) Tensor [source]#
Create input vector into RNN network
- Parameters:
one_off_target – tensor to insert into first position of target. If None (default), remove first time step.
- create_log(x, y, out, batch_idx)[source]#
Create the log used in the training and validation step.
- Parameters:
x (Dict[str, torch.Tensor]) – x as passed to the network by the dataloader
y (Tuple[torch.Tensor, torch.Tensor]) – y as passed to the loss function by the dataloader
out (Dict[str, torch.Tensor]) – output of the network
batch_idx (int) – batch number
prediction_kwargs (Dict[str, Any], optional) – arguments to pass to
to_prediction()
. Defaults to {}.quantiles_kwargs (Dict[str, Any], optional) –
to_quantiles()
. Defaults to {}.
- Returns:
log dictionary to be returned by training and validation steps
- Return type:
Dict[str, Any]
- decode(input_vector: Tensor, target_scale: Tensor, decoder_lengths: Tensor, hidden_state: Tuple[Tensor, Tensor] | Tensor, n_samples: int = None) Tuple[Tensor, bool] [source]#
Decode hidden state of RNN into prediction. If n_smaples is given, decode not by using actual values but rather by sampling new targets from past predictions iteratively
- encode(x: Dict[str, Tensor]) Tuple[Tensor, Tensor] | Tensor [source]#
Encode sequence into hidden state
- classmethod from_dataset(dataset: TimeSeriesDataSet, allowed_encoder_known_variable_names: List[str] = None, **kwargs)[source]#
Create model from dataset.
- Parameters:
dataset – timeseries dataset
allowed_encoder_known_variable_names – List of known variables that are allowed in encoder, defaults to all
**kwargs – additional arguments such as hyperparameters for model (see
__init__()
)
- Returns:
DeepAR network
- predict(data: DataLoader | DataFrame | TimeSeriesDataSet, mode: str | Tuple[str, str] = 'prediction', return_index: bool = False, return_decoder_lengths: bool = False, batch_size: int = 64, num_workers: int = 0, fast_dev_run: bool = False, return_x: bool = False, return_y: bool = False, mode_kwargs: Dict[str, Any] = None, trainer_kwargs: Dict[str, Any] | None = None, write_interval: Literal['batch', 'epoch', 'batch_and_epoch'] = 'batch', output_dir: str | None = None, n_samples: int = 100, **kwargs) Prediction [source]#
predict dataloader
- Parameters:
dataloader – dataloader, dataframe or dataset
mode – one of “prediction”, “quantiles”, “samples” or “raw”, or tuple
("raw", output_name)
where output_name is a name in the dictionary returned byforward()
return_index – if to return the prediction index (in the same order as the output, i.e. the row of the dataframe corresponds to the first dimension of the output and the given time index is the time index of the first prediction)
return_decoder_lengths – if to return decoder_lengths (in the same order as the output
batch_size – batch size for dataloader - only used if data is not a dataloader is passed
num_workers – number of workers for dataloader - only used if data is not a dataloader is passed
fast_dev_run – if to only return results of first batch
show_progress_bar – if to show progress bar. Defaults to False.
return_x – if to return network inputs (in the same order as prediction output)
return_y – if to return network targets (in the same order as prediction output)
mode_kwargs (Dict[str, Any]) – keyword arguments for
to_prediction()
orto_quantiles()
for modes “prediction” and “quantiles”trainer_kwargs (Dict[str, Any], optional) – keyword arguments for the trainer
write_interval – interval to write predictions to disk
output_dir – directory to write predictions to. Defaults to None. If set function will return empty list
n_samples – number of samples to draw. Defaults to 100.
- Returns:
- if one of the
`return
arguments is present, prediction tuple with fields
prediction
,x
,y
,index
anddecoder_lengths
- if one of the
- Return type: