Skip to main content
Ctrl
+
K
Site Navigation
Getting started
Tutorials
Data
Models
Metrics
FAQ
Contribute
API
Release Notes
GitHub
GitHub
Ctrl
+
K
Site Navigation
Getting started
Tutorials
Data
Models
Metrics
FAQ
Contribute
API
Release Notes
GitHub
GitHub
Ctrl
+
K
Section Navigation
data
encoders
_clipped_log
_clipped_logit
_identity
_minus_one
_plus_one
_square
softplus_inv
EncoderNormalizer
Expm1Transform
GroupNormalizer
MinusOneTransform
MultiNormalizer
NaNLabelEncoder
ReLuTransform
SoftplusTransform
TorchNormalizer
TransformMixIn
examples
_get_data_by_filename
generate_ar_data
get_stallion_data
samplers
GroupedSampler
TimeSynchronizedBatchSampler
timeseries
_find_end_indices
check_for_nonfinite
TimeSeriesDataSet
models
base_model
_concatenate_output
_torch_cat_na
AutoRegressiveBaseModel
AutoRegressiveBaseModelWithCovariates
BaseModel
BaseModelWithCovariates
PredictCallback
PredictTuple
Prediction
baseline
Baseline
deepar
DeepAR
mlp
DecoderMLP
submodules
FullyConnectedModule
nbeats
NBeats
sub_modules
linear
linspace
NBEATSBlock
NBEATSGenericBlock
NBEATSSeasonalBlock
NBEATSTrendBlock
nhits
NHiTS
sub_modules
init_weights
IdentityBasis
NHiTS
NHiTSBlock
StaticFeaturesEncoder
nn
embeddings
MultiEmbedding
TimeDistributedEmbeddingBag
rnn
get_rnn
GRU
LSTM
RNN
rnn
RecurrentNetwork
temporal_fusion_transformer
TemporalFusionTransformer
sub_modules
AddNorm
GateAddNorm
GatedLinearUnit
GatedResidualNetwork
InterpretableMultiHeadAttention
PositionalEncoder
ResampleNorm
ScaledDotProductAttention
TimeDistributed
TimeDistributedInterpolation
VariableSelectionNetwork
tuning
optimize_hyperparameters
PyTorchLightningPruningCallbackAdjusted
metrics
base_metrics
convert_torchmetric_to_pytorch_forecasting_metric
AggregationMetric
CompositeMetric
DistributionLoss
Metric
MultiHorizonMetric
MultiLoss
MultivariateDistributionLoss
TorchMetricWrapper
distributions
BetaDistributionLoss
ImplicitQuantileNetwork
ImplicitQuantileNetworkDistributionLoss
LogNormalDistributionLoss
MQF2DistributionLoss
MultivariateNormalDistributionLoss
NegativeBinomialDistributionLoss
NormalDistributionLoss
point
CrossEntropy
MAE
MAPE
MASE
PoissonLoss
RMSE
SMAPE
TweedieLoss
quantile
QuantileLoss
utils
apply_to_list
autocorrelation
concat_sequences
create_mask
detach
get_embedding_size
groupby_apply
integer_histogram
masked_op
move_to_device
next_fast_len
padded_stack
profile
repr_class
to_list
unpack_sequence
unsqueeze_like
InitialParameterRepresenterMixIn
OutputMixIn
TupleOutputMixIn
API
encoders
_identity
_identity
#
pytorch_forecasting.data.encoders.
_identity
(
x
)
[source]
#
On this page
_identity()
Show Source