MultiNormalizer#
- class pytorch_forecasting.data.encoders.MultiNormalizer(normalizers: List[TorchNormalizer])[source]#
Bases:
TorchNormalizer
Normalizer for multiple targets.
This normalizers wraps multiple other normalizers.
- Parameters:
normalizers (List[TorchNormalizer]) – list of normalizers to apply to targets
- Inherited-members:
Methods
extra_repr
()fit
(y[, X])Fit transformer, i.e. determine center and scale of data.
fit_transform
(X[, y])Fit to data, then transform it.
get_metadata_routing
()Get metadata routing of this object.
get_parameters
(*args, **kwargs)Returns parameters that were used for encoding.
get_params
([deep])Get parameters for this estimator.
get_transform
(transformation)Return transformation functions.
inverse_preprocess
(y)Inverse preprocess re-scaled data (e.g. take exp).
inverse_transform
(y)Inverse scale.
preprocess
(y)Preprocess input data (e.g. take log).
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, return_norm, ...])Request metadata passed to the
transform
method.transform
(y[, X, return_norm, target_scale])Scale input data.
Attributes
TRANSFORMATIONS
- fit(y: DataFrame | ndarray | Tensor, X: DataFrame = None)[source]#
Fit transformer, i.e. determine center and scale of data
- Parameters:
y (Union[pd.Series, np.ndarray, torch.Tensor]) – input data
- Returns:
self
- Return type:
- get_parameters(*args, **kwargs) List[Tensor] [source]#
Returns parameters that were used for encoding.
- Returns:
First element is center of data and second is scale
- Return type:
List[torch.Tensor]
- set_transform_request(*, return_norm: bool | None | str = '$UNCHANGED$', target_scale: bool | None | str = '$UNCHANGED$') MultiNormalizer #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_norm (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_norm
parameter intransform
.target_scale (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
target_scale
parameter intransform
.
- Returns:
self – The updated object.
- Return type:
object
- transform(y: DataFrame | ndarray | Tensor, X: DataFrame = None, return_norm: bool = False, target_scale: List[Tensor] = None) List[Tuple[ndarray | Tensor, ndarray]] | List[ndarray | Tensor] [source]#
Scale input data.
- Parameters:
y (Union[pd.DataFrame, np.ndarray, torch.Tensor]) – data to scale
X (pd.DataFrame) – dataframe with
groups
columns. Only necessary ifGroupNormalizer
is among normalizersreturn_norm (bool, optional) – If to return . Defaults to False.
target_scale (List[torch.Tensor]) – target scale to use instead of fitted center and scale
- Returns:
List of scaled data, if
return_norm=True
, returns also scales as second element- Return type:
Union[List[Tuple[Union[np.ndarray, torch.Tensor], np.ndarray]], List[Union[np.ndarray, torch.Tensor]]]