TorchNormalizer#
- class pytorch_forecasting.data.encoders.TorchNormalizer(method: str = 'standard', center: bool = True, transformation: str | Tuple[Callable, Callable] = None, method_kwargs: Dict[str, Any] | None = None)[source]#
Bases:
InitialParameterRepresenterMixIn
,BaseEstimator
,TransformerMixin
,TransformMixIn
Basic target transformer that can be fit also on torch tensors.
- Parameters:
method (str, optional) – method to rescale series. Either “identity”, “standard” (standard scaling) or “robust” (scale using quantiles 0.25-0.75). Defaults to “standard”.
method_kwargs (Dict[str, Any], optional) – Dictionary of method specific arguments as listed below * “robust” method: “upper”, “lower”, “center” quantiles defaulting to 0.75, 0.25 and 0.5
center (bool, optional) – If to center the output to zero. Defaults to True.
transformation (Union[str, Dict[str, Callable]] optional) –
Transform values before applying normalizer. Available options are
None (default): No transformation of values
log: Estimate in log-space leading to a multiplicative model
log1p: Estimate in log-space but add 1 to values before transforming for stability (e.g. if many small values <<1 are present). Note, that inverse transform is still only torch.exp() and not torch.expm1().
logit: Apply logit transformation on values that are between 0 and 1
count: Apply softplus to output (inverse transformation) and x + 1 to input (transformation)
- softplus: Apply softplus to output (inverse transformation) and inverse softplus to input
(transformation)
relu: Apply max(0, x) to output
Dict[str, Callable] of PyTorch functions that transforms and inversely transforms values.
forward
andreverse
entries are required.inverse
transformation is optional and should be defined ifreverse
is not the inverse of the forward transformation.inverse_torch
can be defined to provide a torch distribution transform for inverse transformations.
- Inherited-members:
Methods
extra_repr
()fit
(y)Fit transformer, i.e. determine center and scale of data.
fit_transform
(X[, y])Fit to data, then transform it.
get_metadata_routing
()Get metadata routing of this object.
get_parameters
(*args, **kwargs)Returns parameters that were used for encoding.
get_params
([deep])Get parameters for this estimator.
get_transform
(transformation)Return transformation functions.
inverse_preprocess
(y)Inverse preprocess re-scaled data (e.g. take exp).
Inverse scale.
preprocess
(y)Preprocess input data (e.g. take log).
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, return_norm, ...])Request metadata passed to the
transform
method.transform
(y[, return_norm, target_scale])Rescale data.
Attributes
TRANSFORMATIONS
- fit(y: Series | ndarray | Tensor)[source]#
Fit transformer, i.e. determine center and scale of data
- Parameters:
y (Union[pd.Series, np.ndarray, torch.Tensor]) – input data
- Returns:
self
- Return type:
- get_parameters(*args, **kwargs) Tensor [source]#
Returns parameters that were used for encoding.
- Returns:
First element is center of data and second is scale
- Return type:
torch.Tensor
- inverse_transform(y: Tensor) Tensor [source]#
Inverse scale.
- Parameters:
y (torch.Tensor) – scaled data
- Returns:
de-scaled data
- Return type:
torch.Tensor
- set_transform_request(*, return_norm: bool | None | str = '$UNCHANGED$', target_scale: bool | None | str = '$UNCHANGED$') TorchNormalizer #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
return_norm (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
return_norm
parameter intransform
.target_scale (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
target_scale
parameter intransform
.
- Returns:
self – The updated object.
- Return type:
object
- transform(y: Series | ndarray | Tensor, return_norm: bool = False, target_scale: Tensor = None) Tuple[ndarray | Tensor, ndarray] | ndarray | Tensor [source]#
Rescale data.
- Parameters:
y (Union[pd.Series, np.ndarray, torch.Tensor]) – input data
return_norm (bool, optional) – [description]. Defaults to False.
target_scale (torch.Tensor) – target scale to use instead of fitted center and scale
- Returns:
- rescaled
data with type depending on input type. returns second element if
return_norm=True
- Return type:
Union[Tuple[Union[np.ndarray, torch.Tensor], np.ndarray], Union[np.ndarray, torch.Tensor]]